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Expressions are derived for thermal diffuse scattering (TDS) using a formalism

based on Born’s S-matrix. It is shown that for monoatomic crystals the

dynamical matrix containing the full information on lattice dynamics can be

recovered from one-phonon TDS intensities. For any non-monoatomic crystal,

part of the information is always lost in the kinematic approximation, but can in

principle be recovered by measuring TDS in the dynamical scattering regime. In

the long-wave limit the description here coincides with known results.

1. Introduction

In the following discussion we assume the validity of both (quasi)-

harmonic and adiabatic approximations. In this particular case the

dynamical matrix, being the Fourier transform of the force matrix,

provides the complete phonon dispersion spectrum and thus elastic

constants and lattice thermodynamics of the material.

Traditionally experimental information on phonon dispersion is

obtained from inelastic neutron (INS) and inelastic X-ray scattering

(IXS). In most cases the data are collected point-by-point and

branch-by-branch along the high-symmetry directions of the crystal.

Consequently typical data-collection times are at least a few days,

even with the most advanced spectrometers. From the intensities of

inelastic scattering, only limited information on the phonon eigen-

vectors is available (Strauch & Dorner, 1986). Therefore, for a

quantitative analysis of the dispersion relations it is necessary to

introduce a model of interatomic interactions (the force matrix)

which reproduces the eigenvalues. Alternatively one may compare

experiment with ab initio calculations.

The distribution of inelastic X-ray scattering by thermally popu-

lated phonons in reciprocal space also carries information on phonon

dispersion (Lonsdale, 1948). This scattering reduces the intensity of

Bragg spots (this reduction is parameterized as Debye–Waller factors

in crystal structure analysis) and substantially increases the intensity

of the background scattering (Wooster, 1962). Historically phonon

dispersion was first determined from thermal diffuse scattering

(TDS) (Olmer, 1948); however, the potential of TDS remained

largely unexploited and lattice dynamics studies were predominantly

conducted using INS and IXS. Recently the advent of third-

generation synchrotron sources with their outstanding brilliance has

led to a revival of TDS studies (Holt et al., 2001, 2007; Xu & Chiang,

2005). In comparison with traditional methods employing point

detectors, the use of area detectors for the collection of TDS patterns

has the advantage of a high data-acquisition rate, i.e. experimental

times range from a few minutes to hours (instead of several days),

with a much simpler and therefore more stable experimental set-up.

Up to now the extraction of the phonon dispersions from TDS was

typically performed using a pre-defined model of interatomic

potentials. The present work addresses the question under which

conditions a model-free reconstruction of the full lattice dynamics is

possible.

2. Theoretical formalism

The intensity of first-order thermal diffuse scattering from a crystal

containing N atoms in the unit cell at temperature T and momentum

transfer Q can be written as
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where !j(q) is the frequency of mode j at reduced momentum

transfer q = Q � s, � j
d is the d-site projected component of the 3N-

dimensional normalized eigenvector of the phonon mode j defined in

periodic notations r j(q + s) = r j(q), where s is an arbitrary reciprocal

lattice vector, fd(Q) is the atomic scattering factor of atom d with

mass Md and Debye–Waller factor Wd(Q) at the position rd, and k is

Boltzmann’s constant (Xu & Chiang, 2005). Note that the above

expression contains both eigenvalues !j(q) and eigenvectors r j(q) of

the dynamical matrix D(q).

In order to obtain the TDS intensity expressed via the dynamical

matrix D(q), we first note that

Q � � j
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� � j
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�Q ¼ QT
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where P(q) = r j(q) � r j(q)*T is the projector matrix; here we re-

define the momentum transfer vector in 3N-dimensional space

merging the three-dimensional Q N times as

QT
¼ Qx Qy Qz ::: ::: ::: Qx Qy Qz

� �
:

Equation (1) can therefore be rewritten in the alternative form
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where the matrix Z(Q) is defined as



ZðQÞ ¼
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Note that the matrix Z(Q) depends on the atomic coordinates and

Debye–Waller factors only, and can therefore be obtained from a

Bragg diffraction experiment.

Since !2
j are the eigenvalues of the (Hermitian) dynamical matrix

D(q), the intensity reads
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and I stands for a unit matrix of appropriate size. D(q) and S(q) are

linked by a biunique function and therefore the inversion is possible

for non-degenerate D(q). The first term in (4) is sufficient for the

description if (h- /kT)2||D(q)|| � 1.

Expression (4) defines the so-called S-matrix introduced by Born

in 1942 (Born, 1942) and already contained in Waller’s dissertation, as

Born mentions. The S-matrix decomposition has been applied before

for the analysis of Debye–Waller factors (Scheringer, 1972; Groene-

wegen & Huiszoon, 1972; see also Willis & Pryor, 1975). To the best

of our knowledge, this formalism has not been reported in the context

of TDS.

For the special case of monoatomic crystals,

ZðQÞ ¼ f ðQÞ exp½�WðQÞ��I; ð5Þ

IðQÞ / f 2
ðQÞ exp½�2WðQÞ� �QT

�SðqÞ �Q: ð6Þ

As S(q) and D(q) for a monoatomic crystal are real and symmetric,

the minimum Q-set for a complete D(q) reconstruction at arbitrary q

assumes six observations at most. The rank of the system of equations

to be solved has to be six for a general point. Reciprocal-space

mapping with a two-dimensional detector allows over-determination

for the system of equations (6) for any q, thus providing the phonon

dispersion, density of states and all the derived values. Lorentz and

polarization corrections have to be applied prior to the treatment.

For non-monoatomic crystals, S(q) at an arbitrary q remains just

Hermitian even if the dynamical matrix takes a special shape (i.e. if

every atom sits at a center of inversion). At no value of s do the

imaginary parts of the non-diagonal elements of the 3 � 3 blocks

situated on the diagonal of the S-matrix, Im[S��(dd |q)] (� 6¼ �), give

any contribution to the final intensity as the corresponding terms [see

equation (3)] are equal to

Q�Q� zd S��ðdd q
�� Þ þ S��ðdd q

�� Þ� �
z�d ¼ 2Q�Q� Re S��ðdd qÞ

��� �
zd

�� ��2:
Therefore neither S(q) nor D(q) can be completely reconstructed

from TDS data only. 3N values of the complex matrix S(q) are irre-

versibly lost in a kinematic scattering experiment; this statement

holds true for simple structures like NaCl or diamond. The number of

lost parameters might reduce for a limited set of q vectors where

Im[S��(dd |q)] = 0, presumably situated at the center and boundary of

the Brillouin zone. For compounds with more than one atom per unit

cell, TDS may be used for the validation of theoretical models, as are

phonon dispersions, and thus provide valuable information on the

validity of the model.

Information on the missing elements of the S-matrix may be

recovered from coherent X-ray scattering. Coherently coupled beams

can be prepared by dynamical diffraction methods (Kohl, 1985; Spalt

et al., 1988): when a Bragg spot with momentum transfer G is excited

and the ratio of electric field amplitudes of the diffracted and incident

beams is �, the intensity can be written as

IðQ;GÞ ¼ IðQÞ þ �j j2IðQ�GÞ þ Icoh: ð7Þ

Here the interference term Icoh is due to the coherence of incident

and diffracted beams and reads

Icoh / Re �QT
�ZðQÞSðqÞZ�ðQ�GÞ � ðQ�GÞ

� �
: ð8Þ

Now Im[S��(dd |q)] does contribute to the final intensity and the

complete lattice dynamics can in principle be reconstructed, though

this approach is neither easy nor very practical.

Some use of the above formalism can also be made in the long-

wave limit, where the dominating scattering comes from acoustic

phonons with the linear dispersion ! / qV (q = |q|, V is the sound

velocity). Under this condition, expressions (1) and (3) can be

reformulated as follows,

I / FðQÞ
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�
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1
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coth
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2kT

� 	
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where we use the standard form of the structure factor

FðQÞ ¼
PN
d¼1

fdðQÞ exp �WdðQÞ þ iQ � rd

� �
and P(q) is defined via sound-wave polarizations. Using Christoffel’s

equation with �jk(q) = [1/(�q2)]Cijkl qiql, we obtain
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where
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 �
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Since in the long-wave limit kT � h- qj�j1=2 is easily fulfilled, equa-

tion (11) can be reduced to

S0ðqÞ ¼
kT

h- q2
��1
ðqÞ;

and previously established results are thus recovered (Wooster,

1962). Collecting data in all directions for multiple �-points (Bragg

nodes) allows the complete reconstruction of �(q) (independent of

q), and therefore the determination of the full set of elastic moduli

from a simple diffraction experiment.

3. Conclusions

We have derived expressions for thermal diffuse scattering using

Born’s S-matrix formalism. This formalism proves immediately that

the complete information on lattice dynamics in terms of the dyna-

mical matrix can only be recovered from one-phonon TDS intensities

for a monoatomic crystal. For more complex structures, part of the

information is irreversibly lost in the kinematic scattering regime, but

can in principle be recovered by measuring TDS in the dynamical

scattering regime. However, even for the kinematic scattering case, a
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complete reconstruction is still possible for a limited number of

points in the Brillouin zone.

The authors are grateful to M. Krisch for numerous fruitful

discussions, and to H. B. Bürgi for critical reading of the manuscript.
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